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1       SUMMARY 
The overall goal of the X-Graphs project was to develop computational techniques and 
software tools for graph analytics. This report describes the two main components of this 
project. The first component focuses on support for interactive graph analytics 
applications on medium to large size graphs. The second component focuses on support 
for very high performance graph analytics on large to huge sized graphs. The first 
component of X-Graphs is SNAP [1]. SNAP provides interactive analytics on graphs 
with tens of billions of edges that still fit into a single multi-CPU sever memory. SNAP 
3.0, the most recent release, provides parallel implementations for many key graph 
algorithms, conversions between tables and graphs and Python language bindings. SNAP 
is widely deployed with over a thousand downloads per month. The second component of 
X-Graphs is Delite [18]. Delite is a framework for building compilers for high-
performance Domain Specific Languages (DSLs) that can be used to target 
heterogeneous architectures (multicore, GPU, cluster, FPGA). OptiGraph is a graph DSL 
that is used to develop graph analytics applications that achieve very high performance 
on GPUs with small graphs (millions of edges) and also executes on clusters of CPUs 
with huge graphs (tens of billions of edges). The Delite DSL compiler technology is also 
capable of targeting the emerging flexible accelerator technology based on FPGAs. Delite 
is widely deployed and is being used by industry and academia. Delite generated kernels 
form the core of the DeepDive Knowledge Construction System. 

2 INTRODUCTION 
The goal of the X-Graphs project was to develop computational techniques and software 
tools for analyzing massive dynamically changing graphs for new trends, patterns and 
relationships. Graphs are a powerful way to represent complex data relationships in a 
compact and efficient fashion. Over the course of the project the goals expanded to 
encompass the development of software for all components of high-performance data 
analytics. 

Developing data analytics applications composed of massive graphs creates two problems 
that were solved by the X-Graphs project:  

• Problem 1: Software abstractions for developing graph analytic applications.
Current graph processing and analysis systems do not work well and are
complicated to use due to complicated APIs. Our solution: Graph Domain
Specific Languages. The objective here is to expedite the implementation of graph
analysis applications via a Graph Domain Specific Language (GDSL). The GDSL
will contain the key components of graph analysis algorithms (abstract data
structure and algorithmic building blocks) as language elements. During this
project, we developed two GDSLs: SNAP.py for fast prototyping of graph
algorithms and OptiGraph for high-performance graph analytics.

• Problem 2: High performance platforms for graph processing. Processing graphs
in-memory of a single multicore machine calls for parallel graph algorithms.
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Processing graphs on distributed shared-nothing architectures requires effective 
graph partitioning and computation. Our Solution: Heterogeneous architecture. 
The analyses of large graph streams require large amounts of processing power 
and no single architecture will be suitable for all problems. Our GDSL compiler 
will allow us to utilize and optimize graph analytics applications for several 
different computational architectures and dynamically determine which 
architecture is most suitable for the different parts of the application. We will 
consider: (1) semi- streaming platforms where the data arrives as a continuous 
stream on a single large memory machine, (2) MapReduce/Pregel architecture 
where the data is stored in a distributed file system. 

3 METHODS, ASUMPTIONS, AND PROCEDURES 

 Software Abstractions for Graph Analytic Applications 
To simplify the development of graph applications we have focused on the development 
of GDSLs. We have developed SNAP (Stanford Network Analysis Platform),  a graph 
mining and analytics platform, which scales to massive graphs. SNAP is already 
available as open source (http://snap.stanford.edu). Graph stream algorithms have been 
integrated with SNAP and made available as part of this platform. We also been 
developing a GDSL based on the Delite platform for high-performance DSL 
development. The Delite platform and associated DSLs are available as open source 
(http://stanford-ppl.github.com/Delite)  

Our commercialization plan takes advantage of Stanford’s unique connections to Silicon 
Valley. All the team members already have very strong connections to a variety of local 
companies, from large to small. We will continuously interact with these companies, as 
well as with venture capital firms that may fund spin outs. This model has worked very 
well for the project PIs in the past (generating companies such as Aster Data and 
Google). 

High performance Platforms for Graph Processing and Data Analytics 

The analyses of “big data” requires large amounts of processing power. It is currently a 
significant burden to develop the best implementations of data analysis algorithms for all 
the varieties of parallel architecture (multicore, GPU, cluster, FPGA). The traditional 
library-based approach to this problem has portability and versatility limitations.  Instead, 
we will pursue an approach to developing data-analysis applications based on a suite of 
domain specific languages (DSLs). We have developed a DSL development framework 
called Delite to simplify the process of developing high-performance easy to use DSLs. 
The components of the Delite framework are shown in Figure 1. We have used Delite to 
develop a suite of DSLs for data analysis (query processing, machine learning, and graph 
processing). 

Approved for Public Release; Distribution Unlimited.
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Figure 1. The Delite DSL Framework. 

Delite substantially reduces the burden of developing high-performance DSLs by 
providing common reusable components that enable DSLs to quickly and efficiently 
target heterogeneous hardware [22].  

4 RESULTS AND ACCOMPLISHMENTS 

 Software Abstractions for Graph Analytic Applications 
Under XDATA, we made our SNAP network analysis software and datasets collection 
into a robust, open source platform. They became a central resource for network analysts, 
used by thousands every month. 

We developed SNAP into a powerful tool for network analysis. We expanded core SNAP 
with significant new functionality: built-in operators for relational tables, primitives for 
graph creation, high-performance implementation of several key algorithms, and support 
for graphs with attributes. We demonstrated that interactive analysis of networks with 
billions of edges is practical on modern multi-core large-memory machines. We also 
provide in SNAP high-performance implementations of novel methods for networks 
analysis: several methods for detection of overlapping communities, personalized 
PageRank, node embeddings into a d-dimensional space, counting of temporal motifs, 
motif-based node clustering. The following new SNAP capabilities have made it 
accessible to a wide range of users, interested in network analysis: support for Python - a 
major programming language for data scientists, documentation, tutorials, and unit tests. 

The goal of Ringo is Ringo to provide an interactive environment for construction, 
analysis, and manipulation of graphs on a single large-memory multicore machine. Ringo 
is based on Snap.py and SNAP, and uses Python. Ringo now allows the integration of 
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graphs and tables in a single system and provides powerful primitives for graph 
construction. We received a best demo award at SIGMOD 2015 for the Ringo project. 

SNAP network analysis software has been downloaded over 12,000 times in the last 12 
months. Its Github repository has 645 stars. The paper on SNAP has 112 citations, 
according to Google Scholar. The SNAP dataset collection received around 900,000 Web 
hits in the last 12 months. It has been cited 800 times, according to Google Scholar. 

OptiGraph is a DSL, developed under the Delite DSL framework, for static graph 
analysis based on the Green-Marl DSL [Hong et al. 2012]. OptiGraph enables users to 
express graph analysis algorithms using graph-specific abstractions and automatically 
obtain efficient parallel execution. OptiGraph defines types for directed and undirected 
graphs, nodes, and edges. It allows data to be associated with graph nodes and edges via 
node and edge property types and provides three types of collections for node and edge 
storage (namely, Set, Sequence, and Order). Furthermore, OptiGraph defines constructs 
for Breadth-First Search (BFS) and Depth-First Search (DFS) order graph traversal, 
sequential and explicitly parallel iteration, and implicitly parallel in-place reductions and 
group assignments.  The SNAP library can be used to generate OptiML programs to take 
advantage of the high-performance execution options provided by the Delite DSL 
framework. The OptiGraph  publication is cited over 200 times.  

High performance Platforms for Graph Processing and Data Analytics 

Under X-Graphs we developed the Delite DSL Framework into a platform for performing 
large-scale graph analytics, and added new features to improve performance in this 
domain. The OptiGraph DSL was the main vehicle for our exploration of graph analytics. 
OptiGraph provides a functional programming model for graph analytics and has 
demonstrated much better performance with existing state of the art graph processing 
frameworks such as GraphLab and PowerGraph.   

Graph Algorithms – We developed optimized implementations of several important 
graph algorithms including Betweeness Centrality, Breadth First Search, Page Rank, 
Triangle Counting, and Community Detection. We spent considerable effort implanting 
the Louvain Method for community detection for visualizing graphs. These graph 
algorithms match similar functionality available in SNAP. 

Graph Layouts – Besides storing a graph in the well-known compressed sparse row 
(CSR) representation, we have investigated new ways of laying out a graph in a shared 
memory environment to enable performance benefits on certain algorithms.  In graph 
algorithms, it is often the case that a join query of some nature is required to provide 
rapid lookup of a node in a neighborhood. We have developed a platform for OptiGraph 
that parametrically allows graph neighborhoods as well as computation frontiers to be 
stored and computed in several different graph data layouts.   We have devised a 
methodology to decide which algorithmic and dataset dependent factors make one data-
layout better than another. Armed with this methodology, we developed algorithms in the 
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OptiGraph compiler that automatically choose the optimal data-layout. 

Graph Scheduling – Delite has historically allowed for only statically scheduled parallel 
computations, but due to the load imbalance performance losses that can occur with 
graph computations we extended the functionality of our scheduler.  First, we are 
implementing a dynamic scheduler that will effectively provide work stealing across any 
parallel loops in Delite.  Extending this idea further, we have added an asynchronous 
engine in Delite that allows graph computations to extend across iterations of parallel 
computations without any need for costly synchronizations. Several existing graph 
processing platforms have shown that doing this provides a performance advantage for 
certain graph algorithms.  

We made many enhancements to the general Delite infrastructure, both in terms of 
making Delite DSLs easier to create and in terms of more powerful optimizations and 
improved performance.  The Delite compiler initially only had fixed phases, and DSL 
authors could only perform optimizations as the IR was being constructed.  We have now 
added support for DSL authors to define additional IR traversals and transformations.  
Using this support, we implemented powerful data structure optimizations that were not 
feasible without this facility, including array-of-struct to struct-of-array transformations 
and dead field elimination.  These optimizations are made possible by introducing a 
Record type as a first-class citizen in Delite that both DSL authors and DSL users can 
extend to make custom records/structs.  These optimizations combined with an improved 
parallel loop fusion algorithm and some other existing optimizations have produced order 
of magnitude speedups across multiple applications [1].   

We developed support in Delite for mapping to non-CPU accelerators such as GPUs.  A 
key element of this expansion is our C++ code generation coverage of entire applications.  
This support has many practical benefits including the ability to generate vectorized code, 
generate NUMA-aware code within a single process, allocate very large arrays, target 
new accelerators such as the Xeon Phi, and communicate between the CPUs and 
accelerators with less overhead (i.e., copying memory in and out of the JVM).  To make 
this feasible we created our own custom garbage collection mechanism for Delite 
applications using a combination of static analysis and dynamic reference counting.  Our 
high-level analysis in Delite provides all the information required to generate 
vectorizable loops. We can communicate this information to the C compilers using the 
OpenMP SIMD pragma and let the compiler do the detailed work of code generation for 
X86 or Xeon Phi vector units. Support for the SIMD pragma will soon be available for 
the GCC and LLVM compilers with the release of OpenMP 4.0. 

We have complete support in Delite for multi-dimensional mapping to hierarchical 
parallelism in GPUs. This support provides a 28.6x speedup over 1D mappings and 9.6x 
speedup over existing 2D mappings. This support makes Delite generated code equal to 
or better than hand optimized CUDA code.  

Delite is now built around a high-level parallel intermediate language called DMLL the 
Delite Multiloop Language (DMLL). DMLL can be used to generate efficient code for 
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various combinations of devices (including C++, CUDA, and OpenCL). DMLL provides 
implicitly parallel collection operations but lacks “difficult” features such as higher order 
functions, recursion, or an object system. This enables high-level analyses and 
transformations, such as sophisticated loop fusion and data access optimizations.  

The DMLL has been used to support two new analysis and optimization techniques that 
can dramatically improve performance of DSL programs.  

• Partitioning Analysis which decides which data structures and parallel operations
to partition across multiple memory regions in a distributed memory or NUMA
architecture.

• Nested pattern transformations that optimize patterns for distributed
heterogeneous architectures to ensure data is consumed and produced

Using DMLL we now support in Delite for NUMA architectures. This support makes it 
possible to run machine leaning algorithms 10-50 times faster on a 48 core NUMA 
architecture compared to well-known analytic environments like SPARK and 
PowerGraph. Using DMLL we improved the OptiGraph implementation of Gibbs 
sampling so that it is now 4x better than DimmWitted. Gibbs sampling is the main 
inference algorithm used in DeepDive. We integrated the OptiGraph Gibbs sampler into 
DeepDive. This involves replacing the hand coded C++ Gibbs sampler (DimmWitted) in 
DeepDive with the one generated from OptiGraph DSL code. The result of this 
accomplishment is simpler code and much higher performance (4x) than the hand coded 
C++ version.  

Towards the end of the X-Graphs project we explored using Delite to automatically 
generate hardware for DSL applications by adding the compiler analyses and 
transformations necessary to create implementations that are far more sophisticated than 
traditional C-to-Verilog systems. To more precisely reason about data structure usage, we 
added first-class multidimensional arrays to Delite. With this abstraction, we can analyze 
data access patterns in a much more straightforward way than mapping everything to flat 
arrays. With this new information, we implemented automatic tiling transformations on 
nested parallel patterns to greatly improve locality by storing reused data in local 
memories. While this transformation is applicable to many hardware architectures, we 
found it particularly essential for targeting FPGAs which lack built-in caches and 
memory pre-fetchers. We then added code generators from Delite parallel patterns to 
HDL modules. In addition to simply mapping each tiled Delite parallel pattern to a 
hardware design, we also automatically inserted fine-grained hierarchical pipelining 
(metapipelining) across Delite operations and at each nesting level to greatly improve 
design throughput.  

We developed a design framework using this new Delite representation of hardware 
using parameterized templates that captures locality and parallelism information at 
multiple levels of nesting. This representation, called Spatial, is designed to be 
automatically generated from high-level intermediate languages based on parallel 
patterns such as DMLL. We have developed a hybrid area estimation technique which 
uses template-level models and design-level artificial neural networks to account for 
effects from hardware place-and-route tools, including routing overheads, register and 
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block RAM duplication, and LUT packing. Our runtime estimation accounts for off-chip 
memory accesses. We use our estimation capabilities to rapidly explore a large space of 
designs across tile sizes, parallelization factors, and optional coarse-grained pipelining, 
all at multiple loop levels. We show that estimates average 4.8% error for logic resources, 
6.1% error for runtimes, and are 279 to 6533 times faster than a commercial high-level 
synthesis tool. We compare the best-performing designs to optimized CPU code running 
on a server-grade 6 core processor and show speedups of up to 16.7×.  

We have developed the Spatial IR into a new full-fledged performance oriented 
programming language called Spatial. Spatial is intended for performance engineers who 
care about optimizing the performance of applications by specifying parallelism and 
locality. The language is especially valuable for the emerging class of configurable 
accelerator architectures such as field programmable gate-arrays (FPGAs) and coarse-
grain reconfigurable architecture (CGRAs) that are being used to accelerate applications 
in data analytics and machine learning. The Spatial compiler uses techniques developed 
in the Delite compiler to translate DSL applications to hardware using the Chisel HDL. 
We have demonstrated much 2–5 times the performance improvement compared to 
existing FPGA compilers that convert C to hardware using high-level synthesis. The 
growing use of FPGA based accelerators for machine-learning and data processing by 
companies such as Microsoft and Amazon suggest that the Spatial compiler technology 
will play a key role in the data-analytics accelerator market. 

The Delite DSL Framework and associated DSLs (OptiGraph, OptiML, and OptiQL) are 
available as open source on GitHub. The Delite technology is broadly used by academia 
and industry. Industrial use includes Oracle, Intel and a few start-up companies. 

5 CONCLUSIONS 

The overall goal of the X-Graphs project was to develop computational techniques and 
software tools for graph analytics. We were successful in achieving this goal with the 
development of two key software technologies.  SNAP a system designed for interactive 
analytics on large graphs that fit into the memory of a single server and Delite a DSL 
compiler framework for optimizing DSLs to heterogeneous computer architectures. 
Taken together these technologies allow a Data Scientist developer to interactively 
develop an analytics application using SNAP and then deploy it using Delite with the 
goal of achieving much high-performance with much larger dataset sizes. Both SNAP 
and Delite are widely-used open source software available on GitHub. The X-Graphs 
project has supported the generation of over thirty peer-reviewed technical publications. 

6 PUBLICATIONS SUPPORTED BY X-GRAPHS 

1. J. Leskovec and R. Sosič. “Snap: A general-purpose network analysis and graph-
mining library.” ACM Transactions on Intelligent Systems and Technology
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